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a b s t r a c t 

Noisy, intermediate-scale quantum (NISQ) systems are expected to have a few hundred qubits, minimal 

or no error correction, limited connectivity and limits on the number of gates that can be performed 

within the short coherence window of the machine. The past decade’s research on quantum program- 

ming languages and compilers is directed towards large systems with thousands of qubits. For near term 

quantum systems, it is crucial to design tool flows which make efficient use of the hardware resources 

without sacrificing the ease and portability of a high-level programming environment. In this paper, we 

present a compiler for the Scaffold quantum programming language in which aggressive optimization 

specifically targets NISQ machines with hundreds of qubits. Our compiler extracts gates from a Scaffold 

program, and formulates a constrained optimization problem which considers both program characteris- 

tics and machine constraints. Using the Z3 SMT solver, the compiler maps program qubits to hardware 

qubits, schedules gates, and inserts CNOT routing operations while optimizing the overall execution time. 

The output of the optimization is used to produce target code in the OpenQASM language, which can 

be executed on existing quantum hardware such as the 16-qubit IBM machine. Using real and synthetic 

benchmarks, we show that it is feasible to synthesize near-optimal compiled code for current and small 

NISQ systems. For large programs and machine sizes, the SMT optimization approach can be used to 

synthesize compiled code that is guaranteed to finish within the coherence window of the machine. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

The promise of quantum computing (QC) is to provide the hard- 

ware and software environment for tackling classically-intractable 

problems. The fundamental building block of a quantum computer 

is a qubit or quantum bit. In the circuit model of quantum compu- 

tation, quantum programs can be viewed as a series of operations 

(gates) applied on a set of qubits. These gates may act on a single 

qubit or on states constructed using multiple qubits. 

Building operational quantum computers requires overcoming 

significant implementation challenges. For useful quantum compu- 

tation, the state of a qubit should be coherent for a long duration 

of time, the error rates of gates should be low and unwanted quan- 

tum interactions should be minimized. 
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QC’s hardware challenges have been partially overcome on 

small scales (5–20 qubits) using Nuclear Magnetic Resonance [1,2] , 

trapped ions [3,4] , and superconducting qubits [5,6] among oth- 

ers. Current systems using these technologies have limited coher- 

ence time (few hundred microseconds for superconducting qubits), 

noisy operations (error rates close to 0.01), and limited qubit con- 

nectivity. As implementation techniques improve, these Noisy In- 

termediate Scale Quantum (NISQ) systems are expected to scale to 

a few hundred qubits, still with minimal or no error correction and 

limited connectivity. NISQ systems will also have limited coherence 

time, allowing at most a few thousand gates to be executed [7] . 

The last decade’s research on quantum computing and compil- 

ers has focused on methods for reliable fault tolerant computation 

using large machines with thousands of qubits [8–10] . Under tight 

NISQ constraints, however, it is crucial to design tool flows which 

make efficient use of the limited hardware resources without sac- 

rificing the ease and portability of a high-level programming envi- 

ronment. In this vein, this paper describes and evaluates a com- 

piler for programs written in a high-level language targeted for 

NISQ machines with hundreds of qubits. 

https://doi.org/10.1016/j.micpro.2019.02.005 
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Our compiler takes as input a QC program written in the Scaf- 

fold language. The Scaffold language is a QC extension of C. Scaf- 

fold features automated gate decomposition and quantum logic 

synthesis from classical operations. Scaffold programs are indepen- 

dent of the size, qubit technology, connectivity, and error char- 

acteristics of the machine. These features provide portability and 

allow users to express their algorithms at a high level—in terms 

of logic operations and quantum functions, rather than a more 

circuit-oriented gate-level description of the intended computation. 

To compile Scaffold programs for NISQ systems, we use an opti- 

mization based approach. We express the compilation problem as 

a constrained optimization problem which incorporates both pro- 

gram and machine characteristics. Using the Z3 Satisfiability Mod- 

ulo Theory (SMT) solver [11] , the compiler maps program qubits to 

hardware qubits, schedules gates, and inserts CNOT routing oper- 

ations while optimizing the overall execution time. The output of 

the solver is a near-optimal spatiotemporal mapping that is used to 

produce target code in the OpenQASM language. The target code 

can be directly executed on existing quantum hardware such as 

the 16-qubit machine from IBM. To scale our method to large qubit 

and gate count, we have developed a heuristic approach which also 

uses the SMT solver. 

Our experiments demonstrate the optimal compilation of pro- 

grams for the Bernstein–Vazirani algorithm and execution results 

from real hardware. Using a collection of real and synthetic bench- 

marks, we show that near-optimal compilation is feasible for sys- 

tems with small qubit count and limited coherence time. Our re- 

sults also show that the heuristic method scales to large qubit and 

gate count, and can efficiently fit programs to execute within the 

coherence window of the machine. 

The main contributions of this paper are as follows: 

• We develop an end-to-end framework based on constrained op- 

timization to compile high level quantum programs for near 

term NISQ systems. 

• Using real and synthetic benchmarks, we demonstrate that the 

constraint-based compiler can be used for near-optimal compi- 

lation on current and near term systems. 

• We propose a heuristic method for compiling programs for ma- 

chines with large qubit and gate counts. The heuristic method 

uses optimization to fit the execution schedule of a program 

within the coherence window of the machine. 

• We demonstrate that our heuristic method scales to large pro- 

grams. For large programs on 128 and 256 qubits, we exhibit 

cases where the SMT solver can fit all the gates within the al- 

lowed coherence window, while a greedy scheduling method 

cannot. 

The rest of the paper is organized as follows: Section 2 dis- 

cusses related work and Section 3 provides an overview of NISQ 

systems and the Scaffold language. Section 4 presents the key ideas 

for NISQ compilation. Sections 5–7 develop the near-optimal com- 

pilation method using the SMT solver. In Section 8 , we describe 

a fast heuristic method. Sections 9–12 present experimental setup 

and results. 

2. Related work 

Many quantum programming languages and compilers have 

been developed with the goal of simplifying and abstracting quan- 

tum programming from the low level details of the hardware. 

These includes works such as Quipper [12,13] , which is a domain 

specific language embedded in Haskell, and LIQUi| 〉 [14] which 

uses the F # language. These languages offer functionality for quan- 

tum circuit description, classical control and compilation and cir- 

cuit generation. ProjectQ [15,16] , based on Python, is a framework 

which allows simple quantum circuit description and compilation 

for different backends. OpenQASM [17] is a low level language to 

specify a quantum execution at a gate level. It is used as an inter- 

face for near term quantum machines [18] . In this paper, we use 

the Scaffold language which allows us to describe the quantum cir- 

cuit at a high level and leverage the rich LLVM compiler infrastruc- 

ture for automated program analysis and optimization [19,20] . 

In contrast to compilers and frameworks for prior languages, we 

describe a compilation approach which considers the machine co- 

herence time as a primary constraint. This formally guarantees that 

the compiled code can finish execution before the hardware qubits 

decohere. For programs on small NISQ systems, we can also find 

near optimal compilations, which can help in mitigating errors due 

to state decay. Our work provides a toolflow which compiles high- 

level Scaffold programs down to a device-independent intermedi- 

ate representation using ScaffCC and then efficiently maps and op- 

timizes the intermediate representation for a target device. 

Quantum circuit compilation has been studied for different 

hardware technologies and topologies. Bhattacharjee et al. [21] use 

an integer linear programming solver to compile small quantum 

programs for nearest neighbor architectures. However, their ap- 

proach is applicable only for tiny programs with less than 7 qubits 

and 90 gates. Using the SMT solver based approach, we demon- 

strate that near optimal compiled code can be synthesized for sig- 

nificantly larger configurations. Guerreschi et al. [22] develop a 

heuristic to schedule quantum circuits on a linear topology and as- 

sume that all gates (including swaps) require unit time. Venturelli 

et al. [23] use temporal AI planners for scheduling a certain class 

of quantum circuits. Heckey et al. [24] develop heuristic compi- 

lation techniques for a SIMD gate execution model and assume 

quantum teleportation based communication. Dousti and Pedram 

[25–28] are other works on compiling quantum circuits. In contrast 

to these approaches, we provide a general end-to-end compilation 

framework for transforming Scaffold programs to execution ready 

OpenQASM code. 

Recently, Fu et al. [29] , developed QuMA, a microarchitecture 

for QC systems based on superconducting qubits. QuMA takes com- 

piler generated quantum instructions as input and uses micro- 

instructions to achieve precise timing control of the physical 

qubits. 

3. Preliminaries 

3.1. NISQ systems 

NISQ systems encompass near-term quantum computers that 

are expected to scale up to a few hundred qubits. They are ex- 

pected to support a universal gate set, which allows any compu- 

tation to be expressed in terms of a small number of basis oper- 

ations or gates. Qubits in these systems have to be isolated from 

each other, and from the environment, to prevent noise and errors 

due to unwanted interactions. On the other hand, to perform two 

qubit (CNOT) gates, certain pairs of qubits should be able to inter- 

act strongly without influencing neighboring qubits. Hence, NISQ 

systems are expected to support limited qubit connectivity where 

only neighboring qubits can participate in CNOT gates. 

Qubits in these systems are expected to have a coherence time 

of hundreds of microseconds to few milliseconds. The expected 

gate error rates are in the range 0 . 001 − 0 . 01 . These factors im- 

ply that only a few thousand operations can be performed before 

the quantum state decoheres. NISQ systems of this scale can po- 

tentially have important applications in quantum chemistry, quan- 

tum semidefinite programming, combinatorial optimization and 

machine learning [7] . 

This paper focuses on NISQ systems where the qubits are ar- 

ranged in the form of a grid. We assume nearest neighbor connec- 

tivity, where two qubits can participate in a CNOT gate if they are 
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Fig. 1. Overview of the compilation process. The compiler extracts gates from the Scaffold program and uses it in conjunction with the machine configuration to solve an 

SMT optimization problem. 

adjacent on the grid. If a CNOT gate is to be performed between 

two qubits which are not adjacent, the qubits have to be moved to 

adjacent locations using a series of swap operations. 

3.2. Scaffold: quantum programming language 

Scaffold is a programming language for expressing quantum al- 

gorithms. It is an extension of C with quantum types. The user can 

specify quantum algorithms using a gate set and use familiar C 

style functions and loops to modularize the code. A useful feature 

of Scaffold is the ability to specify certain quantum algorithms in 

classical logic, using rkqc modules. These modules allows users to 

express quantum computation using well known classical logic op- 

erations. A variety of applications have been expressed in Scaffold, 

we refer the reader to [10,30] for more details. 

3.3. ScaffCC compiler 

The ScaffCC compiler for Scaffold uses the LLVM compiler 

infrastructure to compile quantum programs, perform resource 

estimation and apply error correction. ScaffCC uses the LLVM 

intermediate representation to transform the program using a 

set of compilation passes. These passes include transformations 

such as loop unrolling, procedure cloning, automatic Toffoli and 

rotation decomposition, and conversion of rkqc modules into 

their quantum equivalents using RevKit [31] . Since quantum 

programs are usually compiled for fixed inputs, ScaffCC includes 

techniques to resolve classical control dependencies and produce 

an intermediate output consisting of only quantum gates. In this 

paper, we use the ScaffCC compiler as a frontend to extract a 

gate-level description of the computation, which is then used to 

synthesize code for NISQ machines. 

4. Optimization techniques for NISQ compilation 

Fig. 1 shows our overall compilation approach, accepting a Scaf- 

fold program as input and producing OpenQASM target code. To 

accomplish this, we first extract gates from the Scaffold program 

using ScaffCC. The gates extracted from ScaffCC are in terms of 

program qubits and are independent of the target device. We de- 

velop compilation techniques which map this gate representation 

onto a target device using SMT optimization. In the SMT optimiza- 

tion step, we solve a constrained optimization problem to deter- 

mine a program mapping, execution schedule and routing deci- 

sions which provide an executable with the minimum makespan 

(execution time). The makespan is the difference between the fin- 

ish time of the last gate and the start time of the first gate. Finally, 

we postprocess the output of the solver, insert routing operations 

as computed by the SMT optimization and emit OpenQASM code. 

Fig. 2. A Scaffold program and the corresponding dependency graph extracted by 

ScaffCC. 

4.1. Gate extraction 

The first module inputs a Scaffold program, and uses the Scaf- 

fCC compiler [19] to extract the LLVM intermediate representation 

(IR) of the program. Since NISQ systems are expected to have low 

coherence time, realistic programs for these systems will only have 

a small number of gates (hundreds to thousands). This allows us 

to consider the whole program as a single block for the purpose of 

optimization. Hence, we unroll all loops and inline all functions in 

the program to create a single program module. In addition, Scaf- 

fCC also performs the rotation and gate decomposition, and clas- 

sical to quantum module conversion steps, to create a flattened IR 

for the program. 

We use the flattened IR to extract gate level information. The 

gate level information specifies each gate in the program, the 

qubits it acts on, and its input and output dependencies. The 

output of this module is summarized as a dependency graph for 

the program. The vertices of the graph are the gates extracted 

from the program, and the edges denote the data dependencies 

between the gates. Each vertex is annotated with the qubits that 

a gate operates on. For example, Fig. 2 shows a Scaffold program 

and its dependency graph. 

4.2. Constraint generation and optimization 

The compiler creates an SMT optimization problem which con- 

sists of a set of variables to track qubit mappings, and gate start 

times and durations. The optimization constraints cater to three 

main factors: 

1. Qubit mapping : The compiler maps program qubits to hardware 

qubits. The mapping constraint specifies that no two program 

qubits can be mapped to the same hardware qubit. 
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2. Gate scheduling : For each gate extracted from the Scaffold pro- 

gram, the compiler determines a start time and a duration. For 

single qubit gates, the duration is the execution time of the 

operation on the target hardware. For CNOT gates, the control 

and target qubits may have to be moved using SWAP opera- 

tions to place the qubits into adjacent locations on the hard- 

ware. The execution time for CNOTs includes the duration of 

the SWAP sequence. Gate scheduling addresses data dependen- 

cies through constraints that a gate should start execution only 

after the gates it depends on finish. 

3. CNOT routing : To prevent routing conflicts, the compiler uses 

two routing policies to reason about the SWAP paths of CNOTs. 

In the first policy, the compiler blocks the rectangle bounded 

by the control and target qubit, and routes the SWAPs us- 

ing hardware qubits in the rectangle. In the second policy, the 

compiler selects one of the two paths along the edge of the 

bounding rectangle (paths which bend only once) and performs 

SWAPs along the selected path. In either case, the SMT con- 

straint is that if two CNOT gates overlap in time, their SWAP 

paths through the hardware qubits should not overlap. 

The SMT optimization simultaneously accounts for all three cat- 

egories of constraints: qubit mapping decisions affect and are in- 

fluenced by the gate scheduling and routing decisions. We describe 

the mapping and scheduling constraints in Section 5 and the rout- 

ing constraints in Section 6 . 

5. SMT optimization: Qubit mapping and gate scheduling 

In this section, we first describe the setup for the optimization 

problem, followed by the qubit mapping and gate scheduling con- 

straints. 

We process the dependency graph of the program, along with 

the configuration of the target machine to create a constrained op- 

timization problem. The program is represented as a dependency 

graph P = (V, E) on Q qubits, where V is the set of gates and E is 

the set of dependencies. The total number of gates is G = | V | . Each 

dependency in E is a pair of gates ( i, j ) such that gate j can start 

only after gate i finishes. We assume that for any qubit, the depen- 

dency graph specifies a total ordering of the gates which act on the 

qubit. Since ScaffCC decomposes multi-qubit gates, each gate in the 

dependency graph is either a single or two qubit gate. 

The machine is represented as an M ×N grid of hardware 

qubits. Each qubit is referred to using its location on the 2-D grid. 

Qubit ( i, j ) has hardware CNOT connections to qubits (i + 1 , j) and 

(i, j + 1) . This representation closely models the nearest neighb- 

hor connections in real systems such as the IBM 16-qubit system 

[18] and the system in development at Google [32,33] . In this pa- 

per, we apply swap operations for communication in a restoring 

manner i.e., if we apply a set of swaps to change the qubit order- 

ing before a CNOT, we apply the same swaps after the CNOT to 

restore the qubit order. 

5.1. Qubit mapping 

A program qubit i is mapped to a hardware qubit ( q x [ i ], q y [ i ]). 

We add the following constraints to ensure that mappings respect 

the distinctness constraint: 

q x [ i ] ∈ [1 , M] , ∀ i ∈ [1 , Q] (1) 

q y [ i ] ∈ [1 , N] , ∀ i ∈ [1 , Q] (2) 

q x [ i ] � = q x [ j] ∨ q y [ i ] � = q y [ j] , ∀ i, j ∈ [1 , Q] s.t. i < j (3) 

5.2. Gate scheduling 

For every gate j , the solver should determine a start time t [ j ] 

and duration d [ j ]. The finish time of a gate is t[ j] + d[ j] . First, we 

constrain the start and finish times to lie within the machine’s co- 

herence threshold ( T ): 

t[ j] ∈ [1 , T ] , ∀ j ∈ [1 , G ] (4) 

t[ j] + d[ j] ≤ T , ∀ j ∈ [1 , G ] (5) 

For any single qubit gate j , we can set the duration variable us- 

ing the duration of the corresponding hardware gate i.e., d [ j ] == 

τ ( type ( j)) . Here, τ is a mapping which specifies the duration for 

each gate type. For example, for any Hadamard gate j , we can set 

the duration as 1 time slot by hard wiring d [ j ] == 1 . 

For CNOT gates, the optimizer has to account for the duration 

of the hardware CNOT, and the time required to move the qubits 

in place before and after the hardware CNOT. If the L 1 distance 

between the control and target qubit is l , the time taken for the 

CNOT is the sum of the durations of l − 1 SWAP gates, the hard- 

ware CNOT, and the restoring sequence of l − 1 SWAP gates. We 

express this duration as: 

define | x | = If-Then-Else (x ≥ 0 , x, −x ) (6) 

dist (c, t) = | q x [ c] − q x [ t] | + | q y [ c] − q y [ t] | (7) 

d [ j ] = 2( dist ( ctrl ( j) , targ ( j)) − 1) ∗ τ (SWAP ) + τ (CNOT ) (8) 

We add constraint (8) for every gate j which is of type CNOT. We 

note that the time required for a SWAP can be halved by imple- 

menting a meet in the middle policy where both control and tar- 

get qubits move in parallel. However, it increases the number of 

parallel operations among nearby qubits and can potentially cause 

more crosstalk errors. In this paper, we assume that only the con- 

trol qubit moves to the target qubit using a series of swaps. 

Finally, we can represent gate dependencies, by enforcing that 

a gate j can start only after its dependent gate i has finished: 

t[ j] ≥ t[ i ] + d[ i ] , ∀ (i, j) ∈ E (9) 

6. SMT optimization: CNOT routing 

CNOTs which occur between program qubits which are at non- 

adjacent locations require communication using SWAP gates. In 

this section, we describe two communication routing policies and 

a pruning strategy to reduce the number of routing constraints. 

We observe that the swap paths taken by concurrent CNOTs 

should not intersect. In Fig. 3 a, we illustrate the necessity of hav- 

ing spatially non-overlapping swap paths. If the control qubits cor- 

responding to the red and blue CNOT pairs are moving towards 

their respective targets, it is possible that the control qubits can 

swap with each other and get deviated from their routing path. In 

such cases, the length of the path from the control to the target is 

no longer the L 1 distance, and it is difficult to quantify the CNOT 

duration exactly in constraints (8) and (9) . If we consider the case 

where swap paths overlap spatially, but qubits use distinct hard- 

ware edges at any given time, then the overall qubit mapping can 

depend on the relative order in which the swap sequences are ex- 

ecuted (not illustrated). 

These scenarios motivate us to spatially restrict the swap paths 

of CNOTs which overlap in time. We use two routing policies: rect- 

angle reservation and 1-bend paths. These policies are inspired 

from similar policies in VLSI routing [34] . We first explain the two 

routing policies and then discuss a pruning strategy which reduces 

the number of routing constraints required for compilation. 
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Fig. 3. CNOT Routing. Fig. 3 a illustrates the need for non-overlapping swap paths. Fig. 3 b and 3 c illustrate the two routing policies used in our compiler. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of this article.) 

6.1. Rectangle reservation 

In rectangle reservation, we reserve the 2-D region bounded by 

the control and target qubit locations for the duration of the CNOT. 

For example, in Fig. 3 b, the highlighted rectangle is reserved for 

the duration of the CNOT. For this policy, we define solver vari- 

ables and constraints to check if two CNOT rectangles overlap. The 

SMT constraint is that if two CNOTs overlap in time, their bound- 

ing rectangles should not overlap in space. The solver reserves the 

rectangle for the duration of the CNOT, and the exact swap path 

within the rectangle is computed during post-processing. 

To implement rectangle reservation, we add variables which 

track the top-left and bottom-right locations of each CNOT in the 

program. Consider a CNOT gate i . We can define the top-left cor- 

ner using variables ( l x [ i ], l y [ i ]) and the bottom-right corner using 

variables ( r x [ i ], r y [ i ]). These variables can be defined using min and 

max relationships on the control and target qubit locations. De- 

note the control-target rectangle of a CNOT i as R i . Using these 

variables the following constraint detects whether the rectangles 

of two CNOTs i and j overlap in space and time: 

O v erlapInSpace (R i , R j ) = ¬ (l x [ i ] > r x [ j] ∨ r x [ i ] < l x [ j] ∨ l y [ i ] 

> r y [ j] ∨ r y [ i ] < l y [ j]) (10) 

O v erlapInT ime (i, j) = ¬ (t[ i ] > t[ j] + d[ j] ∨ t[ j] > t[ i ] + d[ i ]) 
(11) 

The routing constraint for any pair of CNOTs i and j is 

O v erlapInT ime (i, j) ⇒ ¬ O v erlapInSpace (i, j) (12) 

6.2. 1-bend paths 

For the second routing policy, we restrict CNOTs to routing 

paths which bend at most once on the 2-D grid. There are two 

such paths along the edges of the bounding rectangle of the con- 

trol and target qubit. This policy is very similar to dimension or- 

dered routing. 

For example, in Fig. 3 c, the swaps can be routed using the high- 

lighted red path along the top edge of the bounding rectangle. In 

this case, we require the solver to pick one of the two paths us- 

ing a variable which determines the bend point or routing junc- 

tion. 1-bend paths are advantageous because they block less re- 

sources than rectangle reservation at run time. However, the solver 

requires additional compile time to determine the exact path dur- 

ing optimization. 
For 1-bend paths, we can write constraints similar to rectangle 

reservation to check overlap in space. For a CNOT i , the solver uses 
two junction variables b x [ i ] and b y [ i ] to determine the location of 
the bend point. The two segments of the path are the control to 
junction segment, and the junction to target segment. We can con- 
sider these segments as rectangles and apply the overlap check as 
in rectangle reservation. For a CNOT i , denote the control to junc- 
tion segment as R cb 

i 
and the junction to target segment as R bt 

i 
. The 

Fig. 4. A circuit to illustrate transitive closure based pruning of routing constraints. 

In this circuit, only the two CNOTs in the dashed box need a routing constraint. 

None of the other pairs of CNOTs can overlap in time. 

spatial overlap condition for two CNOTs i and j is: 

O v erlap(i, j) = O v erlapInSpace (R cb i , R cb j ) ∨ O v erlapInSpace (R cb i , R bt j ) 

∨ O v erlapInSpace (R bt i , R 
cb 
j ) ∨ O v erlapInSpace (R bt i , R 

bt 
j ) 

(13) 

As in rectangle reservation, we impose a condition that the paths 

should not overlap in space if the gates overlap in time. 

6.3. Transitive closure based pruning 

Evaluating routing constraints during SMT optimization is com- 

putationally expensive because these constraints have more liter- 

als than the mapping and scheduling constraints. We observe that 

we do not require routing constraints for every pair of program 

CNOTs. For any CNOT gate, any gate which depends directly or 

indirectly on the gate cannot overlap with it. Similarly, any gate 

on which the CNOT depends cannot overlap with it. These over- 

laps are avoided by the gate dependency constraint (constraint 

9 ). For example, in Fig. 4 , only the two CNOTs in the highlighted 

box can overlap in time. We can determine whether two CNOTs 

can overlap by computing the transitive closure of the dependency 

graph. For any node in the graph, the transitive closure gives us 

the set of ancestors and descendants in the dependency order. Any 

CNOT gate which is not an ancestor or descendant can potentially 

overlap with the CNOT. For every pair of overlapping gates de- 

termined using the transitive closure algorithm, we add a rout- 

ing constraint. We can compute the transitive clousure efficiently 

using the Floyd-Warshall algorithm [35] . In a perfectly sequential 

program, the transitive closure pruning allows us to avoid routing 

constraints entirely. On our benchmarks, we found that transitive 

closure based pruning can provide up to 20x reduction in the num- 

ber of routing constraints. 

7. OPT algorithm: Near optimal search 

The objective of the solver is to minimize the total execution 

time or makespan of the schedule. We introduce a dummy gate 

G + 1 , which depends on every gate in the program: 

t[ G + 1] ≥ t[ i ] + d[ i ] , ∀ i ∈ [1 , G ] (14) 
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The optimization objective is to minimize the start time of the 

dummy gate: 

minimize t[ G + 1] (15) 

We can minimize this objective function using the Optimiza- 

tion Modulo Theory (OMT) solver in Z3 [36] . To compute a qubit 

mapping and gate schedule which minimizes the execution time, 

we set up an optimization problem using the mapping, scheduling 

and routing constraints discussed earlier. The qubit mapping and 

gate start time variables interlink the three sets of constraints and 

the objective. We specify this optimization problem using the Z3 

APIs and the solver finds the optimal solution. 

In our experiments we found that the Z3 OMT solver is quite 

slow in practice because it searches for the exact optimal solu- 

tion. To use the satisfiability checker in Z3, we rewrite the objec- 

tive function as a constraint, t[ G + 1] ≤ T max . We can search for a 

good value of T max using a binary search procedure. We start with 

an estimate of the upper bound U = T (the coherence window of 

the machine) and a lower bound L = 0 . In every step of the binary 

search, we maintain the invariant that the optimization is satisfi- 

able for T max = U and unsatisfiable for T max = L . Since the optimal 

value is guarenteed to lie within ( L, U ], we compute the approx- 

imation quality as η = U/ (L + 1) . We terminate the binary search 

when the η < 1 + ǫ, where ǫ is a small constant. In our experi- 

ments we denote this search procedure as the OPT algorithm. We 

set ǫ = 0 . 1 to obtain a solution where the execution duration is at 

most 1.1x factor more than the optimum. 

8. Heuristic method 

In our experiments, we found that the near optimal solution 

can be computed for circuits with small qubit and gate count, 

which is characteristic of programs on current and short term 

quantum systems. For future systems with larger qubit counts and 

coherence time, we design a fast heuristic compilation method. 

The primary scalability bottleneck for the solver is that it per- 

forms qubit mapping, gate scheduling and routing simultaneously 

in an exponentially large search space. We design an optimization 

based heuristic which obtains a fast qubit mapping and uses the 

solver to schedule and route operations. This approach preserves 

the flexibility offered by the optimization problem and obtains so- 

lutions which are reasonably close to the optimum. 

We separate the compilation problem into two phases: in the 

first phase, we map qubits to hardware and in the second phase, 

we schedule and route gates. To find a good mapping, we employ 

a greedy strategy which minimizes the total number of SWAP op- 

erations. The intuition behind the greedy mapping is as follows: 

for every pair of qubits in the program, we compute a weight w , 

as the number of CNOTs between the pair. If a pair has a large 

number of CNOTs (higher weight), the qubits should be mapped 

close together in the hardware to reduce the amount of commu- 

nication. Consider a mapping π : Q �→ H , where Q is the set of pro- 

gram qubits and H is the set of hardware qubits. For two program 

qubits q i and q j , we denote the weight as w ij . The total number 

of swaps required to perform CNOTs between q i and q j is d ( π ( q i ), 

π ( q j )), where d is a distance function which accurately models the 

hardware topology. Therefore, the objective is to: 

minimize 
π

∑ 

i, j∈ Q 

w i j d(π (q i ) , π (q j )) (16) 

Since it is NP-hard to optimize this function, we use a greedy 

strategy to obtain a mapping. We denote the weight of a qubit as 

the total number of CNOTs it participates in. We consider qubits in 

non-increasing order of weight. To map a new qubit to the hard- 

ware, we find the location which minimizes its sum of weighted 

distances to already mapped qubits. 

Table 1 

Gate durations. 

Gate Duration (timeslots) 

CNOT 8 

Measure 5 

X 2 

Y 2 

H 1 

Z 0 

S, S † 0 

T, T † 0 

SWAP 24 

Table 2 

Machine configurations. 

Qubits M N 

8 2 4 

16 2 8 

32 4 8 

64 8 8 

128 8 16 

256 16 16 

After computing the greedy mapping, we can perform gate 

scheduling and routing. We perform this in two stages: greedy 

scheduling and routing, followed by refinement using the SMT 

solver if necessary. 

To find a greedy execution schedule, we iteratively schedule the 

earliest gate which is ready i.e., a gate whose dependent gates 

have finished execution. For rectangle reservation, we can incor- 

porate routing into this algorithm, by computing the earliest time 

at which the ready gate can be scheduled without conflicting 

with previously scheduled gates. Similarly, for one bend paths, we 

greedily select the bend point which gives the ready gate the earli- 

est start time. If the execution duration of the greedy schedule fits 

within the coherence window of the machine, we use the com- 

puted mapping and execution schedule. If the length of the greedy 

schedule exceeds the coherence window of the machine, we use 

the SMT solver to search for a refined execution schedule. The 

greedy mapping is used as input to an optimization formulation 

where we have only scheduling and routing constraints. In other 

words, we omit constraints 1 –3 and hard wire the mapping vari- 

ables to the greedy mapping. Then, we add a constraint that the 

execution duration is less than the coherence window of the ma- 

chine and search for a satisfiable solution. This approach ensures 

that the solution produced by the solver respects the coherence 

time of the machine and the routing constraints. 

9. Experimental setup 

Quantum Machine. We assume a 2-D grid of qubits with nearest 

neighbor connectivity. The gate durations used in our experiments 

are listed in Table 1 . The grid sizes used for our experiments are 

listed in Table 2 . For real experiments, we use the IBM 16-qubit 

machine using the IBM Quantum Experience APIs [18] . 

Implementation for real hardware. The layout of the IBM 16-qubit 

IBMQ16 Rueschlikon system is shown in Fig. 5 [18] . All hard- 

ware CNOTs in this system are uni-directional. The coherence time 

of the machine is 100 ms. We normalize all times using the 

time for a single control pulse (80 ns). We use the gate durations 

listed in Table 1 . We use well known transformations to imple- 

ment SWAP gates using CNOTs, and reversed CNOT gates using 

Hadamard gates [37] . We generate output code in the OpenQASM 

language [17] . 
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Fig. 5. Qubit layout in the 16-qubit IBM machine IBMQ16 Rueschlikon . The CNOTs in this machine, shown by arrows, are uni-directional. 

Fig. 6. Bernstein-Vazirani Algorithm with 6 qubits for a hidden bitstring “00111”. 

We denote this configuration as (6,3). All qubits are initialized to the zero state. 

Benchmark. We present results using real and synthetic programs. 

Our real benchmark consists of a set of circuits for the Bernstein- 

Vazirani (BV) algorithm [37,38] , Ising model [39] , and Square Root 

using Grover’s search [10,40] . These benchmarks are implemented 

in Scaffold 1 . The synthetic benchmark consists of programs where 

we apply uniformly chosen random gates from the set {CNOT, H, X, 

Y, Z, T, S, T † , S † } on randomly chosen qubits. These programs are 

generated without information about the machine topology. The 

gate set used in our experiments is:. 

Algorithms. We study two methods: the near optimal search 

method where the solver simultaneously performs mapping, 

scheduling and routing ( Section 7 ) and the heuristic method where 

we use greedy qubit mapping ( Section 8 ). We refer to the first 

method as OPT. The approximation threshold ǫ for OPT is set to 

be 0.1. 

Metrics. We compare the algorithms on compilation time and ex- 

ecution time. The execution time or makespan of the generated 

schedule is the difference of the finish time of the last gate and 

the start time of the first gate. For the BV algorithm, we also report 

the correctness of the algorithm as measured on the IBM 16-qubit 

system. 

Implementation. Our framework implements pre and post- 

processing steps in Python3.5 and the core solver routines in 

C ++ . We use the C ++ interface to the Z3 SMT solver 4.6.0 to 

construct and solve the optimization problem. Our compilation 

runs are performed on an Intel Xeon machine (3.20 GHz, 128 GB 

main memory). 

10. Bernstein-Vazirani algorithm on real hardware 

We present real results from compiling and executing programs 

for the BV algorithm on the 16-qubit IBM hardware. These experi- 

ments use the OPT compiler. 

1 Ising model and Square Root are available at https://github.com/epiqc/ScaffCC . 

Table 3 

Results from executions of Bernstein-Vazirani Algorithm on IBMQ16 

Rueschlikon and the IBM QASM Simulator sim . The success rates on the 

machine and the simulator demonstrate correct compilation and execution. 

Qubits Hidden 

String 

Compile Time 

(s) 

Success rate IBMQ16 

Rueschlikon 

Success rate 

sim 

4 001 1 0.42 1 

4 111 1 0.32 1 

6 0 0 0 01 1 0.70 1 

6 00111 1 0.26 1 

6 11,111 1 <0.1 1 

8 0 0 0 0 0 01 1 0.54 1 

8 0 0 0 0111 1 0.43 1 

8 0,011,111 2 <0.1 1 

Given a function f ( x ): {0, 1} n → {0, 1} of the form a · x ( mod 2) , 

where a ∈ {0, 1} n is an unknown bitstring, the BV algorithm com- 

putes the n bits of a using a single query to a quantum implemen- 

tation of the function. In contrast, a classical algorithm will require 

at least n queries to extract all the bits of a . To achieve this, the al- 

gorithm first puts all the qubits in a superposition state and passes 

them through an oracle implementation of the function. Using a 

quantum effect called phase kickback, it can efficiently recover the 

hidden bits. In Fig. 6 , we show a quantum circuit for 6 bits P 0 − P 5 . 

This circuit implements the oracle corresponding to the hidden bit 

string “00111”. When this circuit is executed on a machine, and the 

qubits are measured, the hidden string is expected as output. 

If we map the program qubits to the hardware qubits based on 

their id, we will obtain the mapping shown in Fig. 7 a. We can see 

that qubits P 2 and P 5 will have to use SWAP gates to perform the 

required CNOT. In Fig. 7 b, we illustrate the mapping obtained by 

the OPT algorithm. We can see that the compiler places qubit P 5 

on a degree 3 node in the system to minimize the distances to 

the control qubits P 2, P 3 and P 4, which are placed in adjacent lo- 

cations. It places qubits P 0 and P 1 at arbitrary locations because 

they do not communicate with other qubits. 

We created BV programs in Scaffold, with 4–8 qubits and hid- 

den bitstrings of varying length. The circuit parameters are shown 

in Table 3 . For each program, the compiler generates OpenQASM 

code which can be executed using the IBM Quantum Experience 

APIs. We performed experiments on the IBM QASM simulator and 

the 16-qubit machine, and used 8192 trials. Each trial corresponds 

to one execution of the program. A trial is a success if the mea- 

sured classical output matches the hidden bitstring. We note that 

the experiments on the simulator and the real hardware use the 

same OpenQASM code. This allows us to verify the correctness of 

the synthesized code in the absence of noise and gate errors on 

the real hardware. 

From Table 3 , we can see that the OPT algorithm finds a near 

optimal schedule for these programs in a few seconds. We report 

the success rates observed on the simulator and the real machine 

as the ratio of successful trials to the total number of trials. We 

can see that the success rate on the simulator is perfect, validating 

the correctness of the compilation pipeline. On the real machine, 
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Fig. 7. An illustration of qubit mapping for the Bernstein-Vazirani (6,3) program. The mapping produced by our compiler accounts for CNOT communication and places 

the communicating qubits in adjacent locations. P0 and P1 have no communication, and therefore can be distant. A naive program order mapping of the qubits can be 

suboptimal for communication and overall execution time. 

Fig. 8. Top 20 outcomes from executions of the Bernstein-Vazirani program for the 

hidden bitstring “00111” (See Fig. 6 ). The program qubits are measured in the order 

P5, P0, P1, P2, P3, P4 since P5 is expected to be 1. The required bitstring dominates 

the output distribution. 

we see reasonably high success probability in all but two cases. 

For the (6,3) program we show the measured output distribution 

in Fig. 8 . We see that the required bitstring dominates the out- 

put distribution. We also observe the effect of single and two qubit 

errors which corrupt the output and produce strings with one or 

more bits flipped. 

11. Evaluation of the OPT algorithm 

11.1. Compilation time 

In this experiment we use the synthetic benchmark to study 

the compilation time of the OPT algorithm. The random bench- 

marks used in our experiments are shown in Table 4 . For each pro- 

gram, we run the OPT algorithm with rectangle reservation and 1- 

bend path policies to obtain a 1.1x approximation of the makespan. 

We report the compilation time and makespan of the schedule. In 

Table 4 

Compilation time and makespan for the synthetic benchmark us- 

ing the OPT algorithm. We compare two routing policies: rectangle 

reservation (RR) and 1-bend paths (1BP). 

Circuit Properties Makespan (timeslots) Compile Time (s) 

Qubits Gates RR 1BP RR 1BP 

8 64 29 29 0 0 

8 128 351 351 20 31 

8 256 742 664 270 298 

8 512 1484 1328 2729 2479 

16 64 31 31 1 3 

16 128 175 175 60 162 

16 256 234 234 418 949 

16 512 50 0 0 50 0 0 timeout 

32 64 19 19 3 6 

32 128 92 92 598 1210 

32 256 53 53 253 845 

32 512 8806 8806 timeout 

64 64 16 16 8 15 

64 128 29 29 31 73 

64 256 39 39 1283 2349 

64 512 10,0 0 0 10,0 0 0 timeout 

three cases we see that the solver times out (24 h) while trying to 

refine the schedule using binary search. For these cases, we report 

the makespan of the best solution obtained. 

From Table 4 , we can see that, for circuits with a small number 

of qubits and gates, the solver provides near optimal compilation. 

Increasing the number of qubits or gates, increases compilation 

time. We can understand this trend using Table 5 , where we cat- 

egorize programs according to qubit and gate count. For programs 

with small qubit and gate count, finding the near optimal solu- 

tion is feasible because the search space is small. For large qubit 

count, the search space of mappings becomes exponentially high. 

For large gate count, the cost of evaluating mappings by scheduling 

and routing gates, becomes prohibitively high. 

However, for current systems and near term systems (5–32 

qubits) with limited coherence time, we can use the OPT algorithm 

to obtain the best compilation, instead of relying on heuristics. In 
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Table 5 

Solver runtime behavior for programs with different qubit and gate count. H : number of machine 

qubits, Q : number of program qubits, T : coherence time of the machine, G : number of gates in the 

program. 

Qubits 

Low High 

Gates Low Near optimum is feasible Many mappings: H! / (H − Q )! 

High Large time per mapping: O ( T G ) Many mappings + large time per mapping 

Table 6 

Compilation time and makespan for the synthetic benchmark using the heuristic algorithm. 

We report the loss factor of the heuristic as the ratio of makespan of the heuristic schedule 

to the optimal schedule from Table 4 . 

Circuit Properties Makespan (timeslots) Makespan Loss factor Compile Time (s) 

Qubits Gates RR 1BP RR 1BP RR 1BP 

8 64 29 29 1.00 1.00 1 0 

8 128 351 351 1.00 1.00 0 1 

8 256 858 742 1.16 1.12 1 1 

8 512 2031 1718 1.37 1.29 10 2 

16 64 30 31 0.97 1.00 0 0 

16 128 341 234 1.95 1.34 0 1 

16 256 798 859 3.41 3.67 0 2 

16 512 ∗ 3750 2810 0.75 0.56 98 50 

32 64 71 72 3.74 3.79 1 0 

32 128 585 486 6.36 5.28 0 1 

32 256 922 584 17.40 11.02 1 1 

32 512 ∗ 2812 2030 0.32 0.23 77 19 

64 64 16 16 1.00 1.00 0 0 

64 128 79 82 2.72 2.83 0 1 

64 256 146 146 3.74 3.74 1 2 

64 512 ∗ 2031 1484 0.20 0.15 1 20 

particular, for the 16-qubit IBM system, the coherence time is 1250 

timeslots. From the table, we can see that, for programs with 8 and 

16 qubits which have optimal makespan less than 1250, OPT can 

compute the best schedule quickly. 

11.2. Effect of routing policy 

From Table 4 , we can see that both routing policies obtain the 

same makespan, except in two cases where the makespan for the 

1-bend path policy is better than rectangle reservation by 10.5%. 

The 1-bend path policy increases the compile time, by up to 3.3x 

factor, because the solver has to determine the exact swap path 

for each CNOT using additional decision variables. For programs 

with small number of gates, the OPT algorithm finds qubit map- 

pings where no swapping is required. Hence, we do not require 

routing in such cases and choice of routing policy does not mat- 

ter. For programs with large number of gates relative to the qubit 

count (8 qubits and 256 or 512 gates), the routing policy becomes 

important because more pairs of program qubits perform CNOTs. 

In these cases, it is beneficial to use 1-bend paths. We expect that 

the benefits of 1-bend paths will be more when the circuits have 

higher parallelism and when qubits perform CNOTs with many 

other qubits. In such scenarios, finding non-overlapping 1-bend 

paths will be beneficial compared to blocking large parts of the 

machine using rectangle reservation. 

12. Evaluation of the heuristic algorithm 

12.1. Comparison of optimal and heuristic schedules 

In this section, we study the schedules obtained using the 

heuristic algorithm. Recall that the heuristic algorithm uses a 

greedy strategy for mapping program qubits to hardware qubits. 

This method aims to reduce the total number of swaps in the syn- 

thesized code. Once a mapping is computed, a greedy schedule is 

computed and the SMT solver is invoked to fit the schedule to the 

coherence window of the machine. 

Table 6 evaluates the heuristic schedules for the synthetic 

benchmark. To compare the heuristic and optimal mappings inde- 

pendent of assumed machine coherence times and without intro- 

ducing any inefficiency in gate scheduling or routing, we modify 

the heuristic method so that the SMT solver searches for a near- 

optimal schedule for the greedy mapping. In other words, we spec- 

ify a large bound (10 0,0 0 0) for the coherence window and ob- 

tain the best gate execution schedule possible using the two al- 

gorithms. We measure the loss factor due to the heuristic as the 

ratio of the makespan of the heuristic schedule to the schedule 

produced by the OPT algorithm. 

Comparing Tables 4 and 6 , we can see that the makespans of 

schedules computed by the heuristic algorithm are longer than 

OPT. The loss factor of the heuristic algorithm is 1.6x and 1.4x (ge- 

omean) for rectangle reservation and 1-bend path policies, respec- 

tively. In all cases, the heuristic computes a schedule within 2 min. 

For three cases (starred), the heuristic finds solutions better 

than the solutions computed by OPT. These are cases where the 

OPT algorithm timed out while searching for the near optimal so- 

lution. In the worst case, we see that the makespan of the heuristic 

schedule is 17x higher than OPT on one program. In this program, 

OPT computes a solution which requires no swap operations, re- 

sulting in low makespan. 

12.2. Evaluation on real benchmarks 

Next, Table 7 evaluates the heuristic algorithm on the Ising 

model and Square root benchmarks on a 128-qubit (8 ×16) grid. 

We can see that, for the square root program with 78 qubits 

and 1515 gates, the compiler requires only 75 s of compilation 

time. Across programs and routing policies, the maximum com- 

pilation time is less than 5 min. We see no significant difference 

in makespan for rectangle reservation and 1-bend paths. This is 
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Table 7 

Evaluation of the heuristic algorithm on two real benchmarks. We can see that all pro- 

grams are compiled within 5 min. 

Benchmark Makespan (timeslots) Compile Time (s) 

Name Qubits Gates RR 1BP RR 1BP 

Ising model 1 5 668 279 279 1 1 

Ising model 2 10 1513 288 288 1 1 

Square root (n = 3) 17 244 7479 7343 1 3 

Square root (n = 4) 30 502 27,463 26,991 61 74 

Square root (n = 5) 47 843 63,531 61,250 3 154 

Square root (n = 6) 78 1515 160,0 0 0 160,0 0 0 75 262 

Table 8 

Coherence times for our scalability experiment. These coherence times were obtained 

by scaling the coherence time of IBMQ16 Rueschlikon . 

Qubits 8 16 32 64 128 256 

Coherence Time (ms) 50 100 200 400 800 1600 

Coherence Time (timeslots) 625 1250 2500 50 0 0 10,0 0 0 20,0 0 0 

Fig. 9. Compilation time of the heuristic algorithm for input programs with differ- 

ent qubit count and depth. Each line represent a particular qubit count. For (128 

qubits, depth 10) and (256 qubits, depth 10), the output of the heuristic fits within 

the allowed coherence window, whereas a greedy method overshoots the window. 

because these benchmarks are highly sequential and do not have 

a lot of overlapping CNOTs. In contrast, on synthetic benchmarks 

which have more parallelism, we see (from Table 6 ) that 1-bend 

paths can provide up to 1.4x improvement in execution duration 

compared to rectangle reservation. 

12.3. Scalability of the heuristic algorithm 

In this experiment, we use the heuristic algorithm and config- 

urations for near term machines to determine whether the SMT 

solver can compile programs to fit within the coherence window 

of the machine. We created a benchmark with 8 to 256 qubits with 

depth 2 to 10. For a program with qubit count q and depth d , the 

number of gates generated is qd . The coherence times for this ex- 

periment are shown in Table 8 . These times are obtained by scaling 

the coherence time of the IBM 16 qubit machine (100us) by 2x, for 

every 2x increase in machine size. 

For each program in this benchmark, we use the coherence 

time for the machine with the same qubit count, and compile it 

using the heuristic algorithm. We plot the compilation times for 

different qubit counts and program depths in Fig. 9 . In all cases, we 

found that the heuristic method was able to find a feasible sched- 

ule where all gates fit within the specified coherence window. For 

programs with less than 128 qubits, we can find a feasible execu- 

tion schedule within 100 seconds. 

In two cases, 128 qubits with 1280 gates, and 256 qubits with 

2560 gates, we found that the SMT optimization is crucial to fit 

the execution schedule within the coherence window. For the 128 

qubit case, the greedy schedule (earliest ready gate first schedule) 

required 10,898 timesteps, which is higher than the allowed coher- 

ence threshold. The SMT solver was able to optimize the sched- 

ule to fit it within the coherence window, and produced a sched- 

ule which executes in 9999 timesteps. We observed similar behav- 

ior for the case with 256 qubits. In general, when the program’s 

makespan is comparable to the machine’s coherence threshold, 

heuristics may not be effective. In such cases, the SMT solver based 

approach is particularly useful to carefully arrange the gates within 

the available coherence window. 

13. Conclusions 

In this paper, we developed a compiler for Scaffold, a high level 

language, targeted for near term quantum systems with hundreds 

of qubits. We developed a constraint based compilation method 

which uses an SMT solver to simultaneously map program qubits 

to hardware qubits, schedule and route gates, while minimizing 

total execution time. Using real and synthetic benchmarks, we 

showed that it is feasible to obtain near optimal compilations for 

current and near term NISQ machines. For larger programs and 

machine sizes, we developed a heuristic method which uses op- 

timization to fit the program to the coherence window of the ma- 

chine. We demonstrated that this method is scalable, and succeeds 

in finding coherence compliant schedules. 
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